Part Number Hot Search : 
MP61010 SDRMFSMS MT9046 SY87702L MBA0414 HTSICH48 AM2940FM U2741B05
Product Description
Full Text Search
 

To Download IRFI7536GPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet   power mosfet benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free applications  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits gds gate drain source 
  







 



 
 !
 s d g d to-220 full-pak d s g v dss 60v r ds ( on ) typ. 2.7m max. 3.4m i d (silicon limited) 86a absolute maximum ratings symbol parameter units i d @ t c = 25c i d @ t c = 100c i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw avalanche characteristics e as single pulse avalanche energy (thermally limited)  mj i ar avalanche current  a e ar repetitive avalanche energy mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  ??? 2.87 c/w r ja junction-to-ambient (pcb mount) ??? 65 75 10lbf  in (1.1n  m) a c 300 (1.6mm from case) 738 see fig. 14, 15, 22a, 22b continuous drain current, v gs @ 10v (silicon limited) continuous drain current, v gs @ 10v (silicon limited) -55 to + 175 20 0.5 max. 86 73 820







 




 
 !
 IRFI7536GPBF    repetitive rating; pulse width limited by max. junction temperature.   limited by t jmax , starting t j = 25c, l = 0.26mh, r g = 50 ? , i as = 75a, v gs =10v. part not recommended for use above this value.  i sd 75a, di/dt 890a/s, v dd v (br)dss , t j 175c.   pulse width 400s; duty cycle 2%.   c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . s d g  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .     
        jc      static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v ( br ) dss drain-to-source breakdown voltage 60 ??? ??? v ? v ( br ) dss / ? t j breakdown voltage temp. coefficient ??? 29 ??? mv/c r ds ( on ) static drain-to-source on-resistance ??? 2.7 3.4 m ? v gs ( th ) gate threshold voltage 2.0 ??? 4.0 v gfs forward transconductance 88 ??? ??? s r g internal gate resistance ??? 0.79 ??? ? i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units q g total gate charge ??? 130 195 nc q g s gate-to-source charge ??? 31 ??? q g d gate-to-drain ("miller") charge ??? 42 ??? q s y nc total gate charge sync. (q g - q g d ) ??? 88 ??? t d(on) turn-on delay time ??? 22 ??? ns t r rise time ???77??? t d ( off ) turn-off delay time ??? 55 ??? t f fall time ??? 64 ??? c iss input capacitance ??? 6600 ??? pf c oss output capacitance ??? 720 ??? c rss reverse transfer capacitance ??? 400 ??? c oss eff. (er) effective output capacitance (energy related) ??? 1080 ??? c oss eff. (tr) effective output capacitance (time related) ??? 1400 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 86 a (body diode) i sm pulsed source current ??? ??? 820 a (body diode)  v sd diode forward voltage ??? ??? 1.3 v dv/dt peak diode recovery  ??? 3.3 ??? v/ns t rr reverse recovery time ??? 43 ??? ns t j = 25c v r = 51v, ???53??? t j = 125c i f = 75a q rr reverse recovery charge ??? 58 ??? nc t j = 25c di/dt = 100a/s  ???65??? t j = 125c i rrm reverse recovery current ??? 2.4 ??? a t j = 25c v gs = 0v, v ds = 0v to 48v  , see fig. 11 v ds = 60v, v gs = 0v t j = 25c, i s = 75a, v ds = 60v mosfet symbol showing the v ds = 30v conditions v gs = 10v  v gs = 0v v ds = 48v ? = 1.0 mhz, see fig. 5 v gs = 20v v gs = 0v, v ds = 0v to 48v  t j = 25c, i s = 75a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250a reference to 25c, i d = 1.0ma  v gs = 10v, i d = 75a  v ds = v gs , i d = 150a v gs = -20v v ds = 60v, v gs = 0v, t j = 125c v ds = 25v, i d = 75a i d = 75a r g = 2.7 ? v gs = 10v  v dd = 39v i d = 75a, v ds =0v, v gs = 10v conditions i d = 75a







 




 
 !
  IRFI7536GPBF fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 12v 10v 6.0v 5.0v 4.75v 4.50v bottom 4.25v 60s pulse width tj = 25c 4.25v 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.25v 60s pulse width tj = 175c vgs top 15v 12v 10v 6.0v 5.0v 4.75v 4.50v bottom 4.25v 2 3 4 5 6 7 v gs , gate-to-source voltage (v) 1.0 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 25v 60s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 75a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 20 40 60 80 100 120 140 160 180 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 48v v ds = 30v v ds = 12v i d = 75a







 




 
 !
 " IRFI7536GPBF fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 60 62 64 66 68 70 72 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) i d = 1.0ma 0 10203040506070 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 e n e r g y ( j ) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 v sd , source-to-drain voltage (v) 1.0 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 i d , d r a i n c u r r e n t ( a ) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 500 1000 1500 2000 2500 3000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 8.6a 12a bottom 75a 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc







 




 
 !
 # IRFI7536GPBF fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. single avalanche event: pulse current vs. pulse width fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 700 800 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 75a







 




 
 !
 IRFI7536GPBF 
$
%&'
(&
)
(
  * fig 16. threshold voltage vs. temperature 
$
%&'

)+
(
  * 
$
%&'
(&
)
(
  * 

$
%&'

)+
(
  * -75 -25 25 75 125 175 t j , temperature ( c ) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 150a i d = 1.0ma i d = 1.0a 0 200 400 600 800 1000 di f /dt (a/s) 2 4 6 8 10 12 14 16 i r r m ( a ) i f = 30a v r = 51v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 2 4 6 8 10 12 14 16 i r r m ( a ) i f = 45a v r = 51v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 0 100 200 300 400 500 q r r ( n c ) i f = 30a v r = 51v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 0 100 200 300 400 500 q r r ( n c ) i f = 45a v r = 51v t j = 25c t j = 125c







 




 
 !
 , IRFI7536GPBF fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 21. -

(&
(*
%
)
for n-channel hexfet 
power mosfets 
 
  ?  
 
  ?   
  ?  

 
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period .     !" #" . + - + + + - - -        ?      ? 
 !
"#"" ?       $
 %% ? "#""&#  
     d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90% 10% v gs t d(on) t r t d(off) t f   '( 1 )  $
  0.1 %       #$  % + -    







 




 
 !
 / IRFI7536GPBF 01




+
'




1
'1** *'+*  

  
   
  %$ 23
$-
'+


 


4
2''  

   







 




 
 !
 5 IRFI7536GPBF ? qualification standards can be found at international rectifier?s web site http://www.irf.com/product-info/reliability ?? higher qualification ratings may be available should the user have such requirements. please contact your international rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ ??? applicable version of jedec standard at the time of product release. ms l 1 (per i p c/j e de c j -s t d-020d ??? ) rohs compliant yes tsop-6 qualification information ? moisture sensitivity level qualification level cons umer ?? (per jede c je s d47f ??? guidelines ) 

  
   
    ! !"!! # ! $ $! %!! &''((( )'(%!*  '


▲Up To Search▲   

 
Price & Availability of IRFI7536GPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X